Michat Grzegorzewski
Institute of Telecommunications
Warsaw University of Technology

Witold Wysota, Jacek Wytrebowicz
Institute of Computer Science
Warsaw University of Technology

Semantic Approach
to Technical Requirements Specification

The paper shortly describes today practice of requirements engineering in telecommunication projects.
Next it presents a method of requirements description called OpTeR (Operator Technical Requirements).
We have defined ontology for this method and we have designed OpterView — an editing tool for OpTeR.
The paper explains the benefits of semantic approach and gives some insights of the tool.

1 Introduction

During last 30 years, the domain of requirements engineering for software intensive project has grown
and evolved. Some important standards have been accepted and more than 40 requirements manage-
ment tools are available on the market today. IEEE Std 830 (1984, 1988, 1998) defines Recommended
Practice for Software Requirements Specifications[8]. ANSI/IEEE Std 1471 (2000, 2007) defines
Recommended Practice for Architectural Description of Software-Intensive Systems[9]. This stan-
dard was adopted by ISO/IEC JTC1/SC7 as ISO/IEC 42010:2007. The number of requirements man-
agement tools is big enough to make comparison of them a laborious task. The International Council
on Systems Engineering has published such a comparison on their web pages'. The mentioned stan-
dards give the common understanding on requirements engineering and define recommendations for
requirements processing. The tools follow the recommendations, however they differ from each other.
Some of them are specialized to support particular task, others belong to big platforms that integrate
tools for all the product design process.

Although requirements engineering is based on the years of practice and experience from millions
of projects led all over the world in the past, there is a new idea: to define ontologies for requirements
databases. This idea has been exploited already in a few university projects. We know only two of
them:

e A requirements ontology has been created — SoftWiki Ontology for Requirements Engineering
(SWORE?);

e Software Engineering 2.0 (that is called also SEOtology — Software Engineering Ontology)?.

Thttp://www.incose.org/ProductsPubs/products/rmsurvey.aspx
Zhttp://softwiki.de/SWORE
3http://www.seontology.org

PRZEGLAD TELEKOMUNIKACYJNY - ROCZNIK LXXXII - i WIADOMOSEI TELEKOMUNIKACYJNE - ROCZNIK LXXVIII - nr 8-9/2009

1912

We have tried to apply this idea during a project we have been working on for Telekomunikacja Polska
S.A.[7]. One of our aims was to find a methodology for description of operator technical requirements
dedicated for telecommunication services design in NGN-CSN* hybrid environment. This paper
summarizes the knowledge and experiences we have collected during that project. It gives a brief
description of todays practice of requirements engineering. Next it presents a method of requirements
description called OpTeR (Operator Technical Requirements), which is in fact an extension of already
proposed solutions[1, 3]. The important novelty, described here, is the ontology definition for OpTeR
and resulting properties of the new approach. We have also designed a prototype of an editing tool
(OpterView), which supports creation of semantically structured requirements specifications. The
paper gives the idea how it looks like, and what is the format of registered data files.

2 Today practice of requirements engineering

The approach to requirements management (RM) differs strongly, depending on project kind and
involved enterprise activity domain. RM is complex, even bureaucratic and time consuming task in
safety critical or military projects. We observe an opposite approach in agile programming techniques,
where RM is very simplified or almost inexistant. On the extreme, the only requirements represen-
tation is so called user stories — short summaries fitting on an index card explaining one aspect of
what the system should do. It has been demonstrated that agile programming techniques are efficient
in small and innovative projects. The telecommunication projects are usually big and expensive, due
to their huge scale of deployment, thus RM should too be complex and well documented alike in the
safety critical projects.

Requirements are the data of different kind, and can be categorized in different ways, e.g. [10],
customer requirements, functional requirements, performance requirements, design requirements, de-
rived requirements, allocated requirements. In the design process we start by collection and analysis
of goals and intentions. Different project stakeholders expect specialized views of the requirements
documentations (what is well expressed in IEEE-1471). Hence, different views are needed for busi-
ness decision makers, for marketing specialists (or end-user representatives), for system architects,
for programmers and for testers. In software engineering it is useful to distinguish functional and
non-functional requirements, because the former can be directly implemented in software. However,
non-functional requirements of a system can, in some cases, be decomposed into functional require-
ments for software. In other cases, a non-functional requirement may be converted into a design
process requirement. For example, a system level maintainability requirement may be decomposed
into restrictions on software code format or decision to build program code in pairs. As we see from
the above, the requirements data arise during design, they have different levels of abstractions and
granularity, and they have to be presented in form suitable for different stakeholders.

We decide to concentrate on technical requirements, because the number of them in a telecom-
munication project can be in the range of several thousands. Other kinds of requirement such as use
case specifications or graphical interface specifications, are much less common. Moreover, techni-
cal requirements are frequently part of tender documentation, they are the base for development, for
testing, and for preparation of acceptance procedures.

Requirements are written as a means for communication between the different stakeholders. Thus
usually their electronic form used for exchange is PDF, RTF, HTML, or a native word processor
form. Frequently they are collected using spreadsheets (e.g., Microsoft Excel). Sometimes RM tools
generate them from their databases. However, our observations demonstrate that the use of word
processors and spreadsheets is dominant, probably due to their ubiquitous and wide familiarity with.

Many requirements are expressed using a natural language in a more or less unstructured way.

4Next Generation Network - Circuit-Switched Network

PRZEGLAD TELEKOMUNIKACYJNY - ROCZNIK LXXXII - i WIADOMOSZ I TELEKOMUNIKACYJNE - ROCZNIK LXXVIII - nr 8-9/2009

1913

Descriptions often contain weak qualifiers such as should be instead of stronger must or has to. This
doesn’t say whether fulfilling the requirement is mandatory or optional, which can lead to inconsis-
tency in the final product. Furthermore, there is no strict template on how the document should look
like. On the first glimpse such documents have something in common, but after more detailed in-
spection it can be seen that although the general idea is the same, they differ much in details and the
similarities come from the fact that people writing the document have been using a similar document
during an earlier project as a starting point (template). It’s hard to call that a methodology.

Another observed thing is that usually the “specification” is written by designers accustomed
to some conditions and environments, in which a system under design could be implemented and
deployed, and therefore the document is biased towards some concrete solutions: hardware provider,
infrastructure, protocols. Hence the document is not a requirement specification anymore but rather
a documentation of in-progress implementation. Validation using such a document is not validation
of the implementation against a required specification, but against the implementation itself. Thus
all requirements are met automatically ’by design” as they are more features of the system than real
requirements.

Technical requirements are often presented in tabular form. This practice has probably been
popularized by PICS (Protocol Implementation Conformance Statement) documents, widely used for
protocol conformance tests, which has been standardized by ISO/IEC 9646-7:1995 and ETSI 300
406[5]. ORB and PixCell tools described below are examples of such approach.

The ORB (Operator Requirements Backbone) system was developed at Warsaw University of
Technology® few years ago as a tool for supporting interaction between a telecom operator and its
supplier. The ORB is a database system designed for creating and verification of Operator’s Techni-
cal Requirements[1, 2, 3]. ORB is based on PICS proforma forms defined in ETSI standards. Using
ORB it is possible for operator to create and modify requirements, and to send this specification to a
supplier who can declare if they are implemented in his product(s). The whole process is divided into
five separate phases (creation, parametrization, declaration, verification, archiving). In the first phase
operator creates general requirements for system under design like requirements hierarchy and struc-
ture, validation roles, etc. Then there is parametrization process in which all specific informations are
defined. In the third phase requirements are sent to supplier who declares implementation status of
defined requirements. After this the verification process is performed by operator who checks the real
implementations status (for example by testing process). Finally all documentations are moved to an
archive for future use.

The main reason why the ORB system is not in use widely is the fact that all requirements’
specifications in ORB system are based only on PICS forms which in fact is not enough for today’s
services. The next step in development of tools for creating and using operator’s requirements was
PixCell.

PixCell is a small tool based on MS Excel which was used to present requirements for telecom
services. This is also a university tool developed in the Institute of Telecommunications at Warsaw
University of Technology[6].

The main goal of this tool is to extend PICS tables and allow users to decide about how detailed
requirements they want to work with. In PixCell there are internal links, which can be used to see
relations between requirements and check if changes in one row have impact on other parts of the
document. It also provides some simple algorithms for calculating current implementation status and
checking its validity. Although this tool is in prototype stage the experience gathered with it has been
useful during work on OpTeR methodology.

A tabular description is less ambiguous, compared to a plain text definition in a natural language.
Use of spreadsheets also has some disadvantages. Although the meaning of data can be distinguished
thanks to column names, the type of data inserted into a cell can vary (e.g., it can be a character string

SInstitute of Telecommunications, Laboratory of Testing and Verification

PRZEGLAD TELEKOMUNIKACYJNY - ROCZNIK LXXXII - i WIADOMOS I TELEKOMUNIKACYJNE - ROCZNIK LXXVIII - nr 8-9/2009

1914

or an integer value). Moreover a user can split the cell vertically or horizontally which makes the
exported files very difficult to process automatically.

Regardless of technical requirements record contents, traceability of the specification has to be
assured. Typical fields we provide for it are: Author, Creation Date and Time, Modification Date
and Time, Origin, State of progress. Traceability data can be attributed to a requirements document,
to selected branches in a hierarchy tree of requirement records, or even to every requirement record.
Filling traceability data is boring, presenting them for most design tasks is useless, thus designers cre-
ating requirement specifications with word processors and spreadsheets frequently ignore them. For
this reason and to eliminate the above mentioned disadvantages of spreadsheet use, it is recommended
to work under requirement specifications with specialized computer aided tools.

3 OpTeR methodology

After a lot of analysis and taking into account limitations in tools described above, a new methodology
was created in Institute of Telecommunications at Warsaw University of Technology. The method-
ology called OpTeR® (described in detail in [7] and [6]) was designed for describing and working
with telecom operator’s requirements. However many other complex ICT projects can use OpTeR,
not only those led by an operator. OpTeR consists of two parts:

e formal description of requirements represented as a table including references to external sources
of information (i.e., external standards that requirements are linked to);

e specification that is not directly written in requirements’ table but has to be taken into account
and notes that can not be formalized.

The nature of all these parts is different. Formal description (the main part of requirement defini-
tion) includes all requirements and are written in a tabular form. There is no space for misunderstand-
ing or misinterpretation. In specification part there are definitions of terms and explanations given in
a natural language without words such as must, should, may, etc. References to internal operator’s
regulations concerning implementation of the system under design can also be placed there. The cru-
cial part of the methodology is the formal description part. The figure 1 shows the structure of OpTeR
requirements table.

A B C b E F G H | J K
ld | Capakility Ref | Stat | Cond| REQ | USE |Op. Notes| SUP | Sup. Notes

Figure 1: OpTeR table structure

Every row in the table describes one requirement. It is possible to organize the requirements in a
tree hierarchy. Requirement identifiers allow to distinguish the position in the hierarchy. The higher
and lower level requirements are described in the same way. Below there is a detailed description of
every field in the requirement record structure:

(A) Id (identifier) — this is the identifier of one single requirement. It must be unique in the whole re-
quirements document and should express hierarchy level (for example using the “x.y.z” format,
where “y” is a more general requirement then “z” and less than “x™).

(B) Capability — in this field there is the title of general group of requirements or description of the
one singe requirement with short explanation. There is no need to write detailed description,
but it is recommended that the name would be unique in whole table.

Operator Technical Requirements

PRZEGLAD TELEKOMUNIKACYJNY - ROCZNIK LXXXII - i WIADOMOSEI TELEKOMUNIKACYJNE - ROCZNIK LXXVIII - nr 8-9/2009

1915

(C) Links — in this field some identifiers can be placed to designate connections between require-
ments. They are static, without any description of the link’s character. In most situations in this
field we can put connections to requirements which are used to fulfil the functionality described
by the current item.

(D) References — in this field we can add references to external documents related to the capability
being described. We can identify two general sources of such documents:

— national or international standards that we (as an operator or supplier) are obligated to
respect;

— other requirement documents that are useed in our environment (company, group, etc.).

There is no limit to number of references we can make, the more references we put here the
less time we spend later to search for information about the capability. Sometimes it is useful
to add a link to a PICS document which contains descriptions of external constraints.

(E) Stat (standard status) — this field is used to show what is the referenced standard status (an
external standard or other document like PICS tables or national regulation). We have to be
complaint with external constraints and to be aware if they are required or optional.

(F) Condition — this field is used to select a value from the Req column (described below). The
condition is a logical statement which can evaluate to true or false. The variables are taken
from SUP field. Depending on the condition, the first value or the second value (after keyword
“else”) from the Req field is selected as binding. If there is no second value we assume that the
requirement status is “n/a” (not applicable).

(G) Requirement — this field is used to show the implementation status from operator/designer point
of view. This status shows if the capability is mandatory, optional or prohibited to implement
by the vendor. Two values separated by “else” can be given in this field. The selection is made
based on the condition described above.

(H) Use — this part of requirement describes if we are going to use this capability or not. In some
design scenarios this field can be useful, e.g., when we plan subsequent versions of the system
under design (we don’t use the feature now but we may use it in future).

(I) Op. Notes (Operator’s notes) — This field is designed for operator’s/designer’s comments how-
ever it is recommended to avoid using it, because it is an informal way of describing require-
ments and can lead to same misunderstandings.

(J) Sup (support) — This field is designed for vendor who can here confirm the implementation
status of the feature (if it is implemented or not). It is recommended that all requirements
would be defined strictly enough so that implementation status is easy to determine without any
comments.

(K) Sup. Notes — in this field the vendor can add additional comments.

Additionally the described structure of OpTeR can be presented in different way (i.e., by hiding
selected columns) depending on user’s role and current project life cycle phase. It is possible —
during contacts with suppliers — that column USE and/or Req are hidden in order to avoid suggesting
expected answers. The operator does not show what functionality is required so the supplier can
fill the table according to his current implementation status. For better understanding of OpTeR
methodology the OpTeR ontology was created and described in following section.

PRZEGLAD TELEKOMUNIKACYJNY - ROCZNIK LXXXII - i WIADOMOSEI TELEKOMUNIKACYJNE - ROCZNIK LXXVIII - nr 8-9/2009

1916

4 OpTeR ontology

Semantic networks is a formal way of storing knowledge in a form that can be understood by ma-
chines. The data is represented by triplets [subject, predicate, object] that allows for knowledge
discovery and formal verification and validation of a model through inferring. The essence of the
knowledge is kept without determining the way it is going to be presented to the receiver[12, 4].

As we decided to base our project platform on semantic networks, it became natural we needed a
semantic approach to managing operator technical requirements as well. A consequence of this was
to create an ontology for the OpTeR tabular notation.

4.1 OpTeR semantic description

To define the ontology for OpTeR we have used OWL. This language creates descriptions according
to the RDF® syntax, which makes our ontology compatible with most popular tools in this domain.
The core of our semantic description is a set of classes that define terms that can be mapped to contents
of the OpTeR table.

The first entity to be created was the ReferenceDocument class. It contains objects that
are external documents that can be referenced from within a requirement through the references
property.

The second class is Usage that holds in its instances the information about a particular require-
ment being in use or not. This class has three instances — UseYes, UseNo and UseNotApplica—
ble. They are possible values of the uses property, which is a relation between a feature (require-
ment) and its usage state.

Each feature can be supported by the provider, not supported or partially supported. This in-
formation is kept by the SupportVvalue class that has the following instances: SupYes, SupNo,
SupPartly and SupNotApplicable. The latter is a special value used if the support for a par-
ticular requirement is not determined.

The next class is RequirementValue that contains instances, which describe the requirement
state of each feature through the requires property.

The final class — Row is a domain for the properties described earlier as well as other properties we
will briefly describe. An instance of this class represents a single row in the document. Its properties
contain values for subsequent columns of the OpTeR table associated with a particular requirement.

Not all of the OpTeR structure are covered by the listed properties. There are also three datatype
properties, which map not to objects but to values of well known simple types — capability,
operatorNotes and supplierNotes that contain textual descriptions from appropriate columns
of the OpTeR table.

There are also four special properties that form relations between rows. The properties can be
matched in pairs where one property in pair is the inverse of the other one. OpTeR specifications
are not flat tables but rather trees that are only displayed as tables. The first of the mentioned pairs
is responsible for groupping rows into hierarchies. It can match a row to a list of its lower level
rows (children) through the hasSubrow property. Similar the 1 sSubrowOf property allows to
find the parent of each row, if it exists. The second pair (1inksTo and 1 sLinkedTo) creates bonds
“across” rows — it represents the functionality to link rows related to each other in a many-to-many
cardinality.

Table 1 presents all the properties of the Row class. One can notice that this matches the structure
of the OpTeR table presented earlier. The properties constitute the verbs (predicates) and the classes
constitute subjects and objects of the mentioned tripplets. Thanks to that we can even form sentences

7Web Ontology Language
8Resource Description Format

PRZEGLAD TELEKOMUNIKACYJNY - ROCZNIK LXXXII - i WIADOMOSg | TELEKOMUNIKACYJNE - ROCZNIK LXXVIII - nr 8-9/2009

1917

in natural language that can be mapped directly to the specification (i.e., Row #1.1 is subrow of row
#1, Row #7.6 is linked to row #2.8.1) and still be perfectly understood by both the human and the

machine.
Table 1: Properties of the Row class
Name Range Cardinality | Comment
isSubrowOf Row 0—-1 points to the parent row
hasSubrow Row 00 points to child rows
capability string 0-1 the name of the requirement
linksTo Row 00 list of rows linked to the current one
isLinkedTo Row 00 list of row the current one is linked to
references ReferenceDocument 00 list of external documents
condition LogicalExpression 0—1 logical expression
requires Requirement 00 require state of a feature
uses Usage 0—-1 whether the requirement is used by the service
operatorNotes | string 00 remarks from the operator
supported SupportValue 0-1 whether the provider supports the requirement
supplierNotes | string 00 remarks from the supplier

4.2 Semantic requirements

Below there is a detailed description of possible semantic usage to build a table of requirements in
OpTeR methodology.

In column “Support” it is allowed to use status:

— Y (yes) — the capability is fully implemented
— N (no) — the capability is not implemented

— P (partly) — this functionality is supported with some remarks. The “P” status is allowed
but it should be avoided due to futures problems or misunderstandings.

Possible usage of column “USE”:

— Y (yes) — this capability is used by owner of the requirements
— N (no) — this capability is currently not used

— N/A (not applicable) — for this capability this column is not used.

Possible values for column Req (Requirement):

M (mandatory) — this functionality must be implemented

O (optional) — it is up to vendor to implement or no this capability

0.1 (optional with limitation) — it is required to implement at least i capabilities marked
like this. For example if there is a group of four requirements mark like O.1 it is needed
to implement only one of the requirement. There rest three should not be implemented.

X (eXcluded) — it is not allowed to implement this functionality

— NR (not required) — owner of this document is not interested if this capability is imple-
mented or not

PRZEGLAD TELEKOMUNIKACYJNY - ROCZNIK LXXXII - i WIADOMOSEI TELEKOMUNIKACYJNE - ROCZNIK LXXVIII - nr 8-9/2009 1918

— N/A (Not Applicable) — the status of this capability is unknown. Value of the column Req
can be defined as a result of condition.

There are lots of possible combinations of the described columns. Each of this combination
represents a different situation, some of them are prohibited (because of logical conflict or noncom-
pliance with standards) and some of them are used for making the requirements weaker or stronger.
More information can be found in [3], [7] or [6]. For better understanding and easier use of OpTeR
ontology the OpTeR View tool was implemented and is described in next section of this paper.

5 OpTeR View editing tool

OpterView is a prototype of a graphical editor for OpTeR. Here we describe its purpose and give some
details about its architecture and functionality. Finally we show possible enhancements of the tool.

The application was created as an example of a view compliant to the architecture of a system
for managing resources we were developing at that time. We also needed a tool to quickly create
ontologies according to the OpTeR specification so that we could use them in other parts of the
project.

The purpose of the editor is to provide an environment for creating OpTeR descriptions in a way
that is more convenient than using a simple spreadsheet. OpterView stores its data in a form of OpTeR
ontology, which makes it possible to use the generated description with other semantic-enabled tools.
At the same time it doesn’t require any skills or knowledge related to semantic networks — the user
only sees a table, which contains rows and columns according to what is specified in OpTeR ontology.

The tool was created in Qt4 — a cross-platform toolkit and application framework. Use of
a portable environment makes it possible to deploy the application on almost any modern system
(including Windows, Unix, MacOSX and even mobile devices). Portability is obtained at source
code level, thus the program is compiled into native code of each platform resulting in a fast sys-
tem with low memory footprint and no dependencies other than the framework itself. Qt4 provides
a very efficient and simple mechanism for internationalization of applications — the approach is used
by OpterView and allows to run the application in any language that can be expressed with Unicode
(including right-to-left written languages). This all makes it, that OpterView integrates well with the
look and feel of other applications for the platform much unlike heavy applications based on Java.
Figure 2 shows a screen shot of OpterView displaying an OpTeR specification of the ISUP protocol.

Currently OpterView is in a prototype stage. Its functionality is limited but it allows for creation
of skeletons or even full OpTeR tables. There are still some quirks and instabilities in the application’s
performance but the main functionality like creating, loading and saving the specifications is ready.

What doesn’t currently exist in OpterView is the support for different aids, making use of the
semantic nature of the editor as well as its processing power to implement functionality such as doing
some checks in the background while the user is thinking about his next steps or otherwise interacting
with the program. One of the easiest yet very useful features that can be added is full detection of
cycles in chains of links between rows in the OpTeR table — the current version of the software is able
to detect simple cycles only. Semantic networks are a formal method and thus give us the apparatus
to mathematically prove correctness or contradiction of the specification. The tool should be able
to cooperate with a semantic reasoning engine like Pellet or Fact++[11, 13] or alternatively provide
basic reasoning support itself.

The future of the editor is closely related to the future of OpTeR methodology. If the notation
gains popularity, then OpterView seems the natural choice for a dedicated application to operate on
OpTeR tables. In such situation the development of the program could be resumed and the missing
functionality could be added.

PRZEGLAD TELEKOMUNIKACYJNY - ROCZNIK LXXXII - i WIADOMOS® I TELEKOMUNIKACYJNE - ROCZNIK LXXVIII - nr 8-9/2009

1919

OpTeR View v A b
Blik Edycja Widok Wiersz Pomoc

E=0 B 1@
133/04492/000%
1D Capability Links Refs Stat Cond REQ USE Op. Notes sup |2

4.3.1.1.1.6 Address signal = *N3.3/1

4.3.1.1.2 Pass on, if present. . - Mandatory [™ .

4.3.1.1.3 Ability to replace according t... Optional [% *N3.3/2

4.3.1.1.4 Ability te transfer transparently. . - Mandatory | ™ . = |

4.3.1.1.5 Divert (transfer transparently... Mandatory M L

4.3.1.1.6 Support for the request to se... ' . . Optional . [Yes |follow link

4.3.1.2 Generic number parameter (... 3.1.2 .

4.3.1.2.1If address information is avail... | - - Optional M

4.3.1.2.2 Include the Parameter comp... Optional M

4.3.1.2.3 Pass on the Generic number ... | - - Optional Y

4.3.1.2.4 Ability to remove or replace a... Optional - *N3.3/2 X

4,3.1,2.5 Abilitv to transfer transparently. | - Mandatory [™ | ' |

Figure 2: OpterView

6 Conclusions

The paper shortly describes the OpTeR methodology for technical requirements specification and
demonstrates the way of describing requirements in a semantic way. It also introduces the OpterView
editor which has been created as a prototype to support OpTeR.

If we assumed that only humans process requirements then building ontology for them would be
superfluous. However, if we intend to process them by computer tools, then semantic data will be
indispensable. When the number of technical requirements is larger than several hundred, working
with them in a paper form is inefficient. It starts to be like with programming code — today nobody
prints it nor analyses paper listings, we have computer tools for that. It is obvious that we need such
tools like OpTeR, and that they should have interfaces to communicate (or exchange data) with other
computer tools.

We do not pretend that OpTeR is the best method for technical requirements specifications. We
state that it can be useful. It is probable that designers use several specification methods and related
tools for big projects. In that case, the possibility of mutual data exchange between the tools is really
desired. If the data collected has semantic description then it will be easy to build links between
different tools for requirement specification and processing.

The presented OpterView editor helps to collect requirement data, probably no so flexibly as
it could be done with MS Excel, but the use of OpterView is much simpler than the use of Excel
and what is more important — the resulting files contain data with semantic description. It is easy to
create a tool, which could generate specialized views of collected requirements. Such views could be
conceived to help reasoning by different specialists about the requirements.

We believe that specialized and lightweight tools which can cooperate exchanging semantically
recognizable data will be dominant in future requirement engineering. New projects are inherently
different from the past projects and they reveal new problems. Huge CASE tools that try to solve all
problems already start to be inefficient and difficult to use. Hence probably presented here semantic
OpTeR methodology shows a good direction for future requirement engineering tools.

PRZEGLAD TELEKOMUNIKACYJNY - ROCZNIK LXXXII - i WIADOMOSEI TELEKOMUNIKACYJNE - ROCZNIK LXXVIII - nr 8-9/2009

1920

References

[1] Krzysztof M. Brzeziniski. Metodyka tworzenia i zapisu wymagan operatora dla implementacji
protokotu telekomunikacyjnego. In PWT°2003, VIII Poznariskie Warsztaty Telekomunikacyjne,
2003.

[2] Krzysztof M. Brzezifiski, R. Artych, and D. Mastalerz. Komputerowe wspomaganie stosowa-
nia wymagan technicznych dla protokotéw. In Srodowisko wspomagajace tworzenie i ek-
spoloatacje Wymagan Operatora dla implementacji protokolow sygnalizacyjnych, dokumen-
tacja uzytkowana systemy ORB v.1.0.

[3] Krzysztof M. Brzezifiski and Michat Grzegorzewski. Komputerowe wspomaganie stosowania
wymagan technicznych dla protokotéw. In materiaty Krajowego Sympozjum Telekomunikacji
KST 04, tom. B, pages 177-186. Instytut Telekomunikacji Politechniki Warszawskiej, 2004.

[4] Allan M. Collins and Elizabeth F. Loftus. A spreading-activation theory of semantic processing.
Psychological Review, 82(6):407-428, November 1975.

[S] ETSI. ETS methods for testing and specification (mts); protocol and profile conformance testing
specifications; standardization methodology. ETSI Std 300 406, 1995.

[6] Michat Grzegorzewski. Komputerowe wspomaganie procesOw stosowania wymagan tech-
nicznych dla protokotéw sygnalizacyjnych. In Master Thesis. Instytut Telekomunikacji Po-
litechniki Warszawskiej, 2004.

[7] Michat Grzegorzewski, Kamil Karwowski, Witold Wysota, and Jacek Wytrebowicz. Metodyka
opisu struktur, ustug i protokotéw hybrydowego srodowiska NGN/CSN dla wspomagania
dziataii Operatora. Technical report ordered by R&D Dept. of Telekomunikacja Polska S.A.
Serial number: 26/06 (501/E/1036/4470), October 2008.

[8] IEEE. IEEE recommended practice for software requirements specifications. IEEE Std 830-
1998, Oct 1998.

[9] IEEE. Systems and software engineering - recommended practice for architectural description
of software-intensive systems. ISO/IEC 42010 IEEE Std 1471-2000 First edition. 2007-07-15,
pages c1-24, 15 2007.

[10] Defense Acquisition University (Producer). Systems engineering fundamentals. Defense Ac-
quisition University Online Publication Resources, 2001.

[11] E Sirin, B Parsia, BC Grau, A Kalyanpur, and Y Katz. Pellet: A practical OWL-DL reasoner.
Journal of Web Semantics, 5(2):51-53, June 2007.

[12] John Sowa, editor. Principles of Semantic Networks: Explorations in the Representation of
Knowledge (Morgan Kaufmann Series in Representation and Reasoning). Morgan Kaufmann
Pub, May 1991.

[13] D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: System description. In Proc.
of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006), volume 4130 of Lecture Notes in
Artificial Intelligence, pages 292-297. Springer, 2006.

PRZEGLAD TELEKOMUNIKACYJNY - ROCZNIK LXXXII - i WIADOMO$QI TELEKOMUNIKACYJNE - ROCZNIK LXXVIII - nr 8-9/2009

1921

